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Structural Break Test!

Lakukan structural break test sebelum melakukan

stationarity test

Setelah pasti ada/tidak adanya structural break 

baru gunakan test stasionaritas yang tepat!

Perhatikan penjelasan Peter Foldvari akan cara

mentesnya. (buka file lec5a.pdf)
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Stationarity and Unit Root Testing

Why do we need to test for Non-Stationarity?

 The stationarity or otherwise of a series can strongly influence its behaviour
and properties - e.g. persistence of shocks will be infinite for nonstationary
series

 Spurious regressions. If two variables are trending over time, a regression of
one on the other could have a high R2 even if the two are totally unrelated

 If the variables in the regression model are not stationary, then it can be proved
that the standard assumptions for asymptotic analysis will not be valid. In other
words, the usual “t-ratios” will not follow a t-distribution, so we cannot validly
undertake hypothesis tests about the regression parameters.
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Value of R2 for 1000 Sets of Regressions of a 

Non-stationary Variable on another Independent 

Non-stationary Variable
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Value of t-ratio on Slope Coefficient for 1000 Sets of 

Regressions of a Non-stationary Variable on another 

Independent Non-stationary Variable
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Two types of Non-Stationarity

 Various definitions of non-stationarity exist

 In this chapter, we are really referring to the weak form or covariance
stationarity

 There are two models which have been frequently used to characterise non-
stationarity: the random walk model with drift:

yt =  + yt-1 + ut (1)

and the deterministic trend process:

yt =  + t + ut (2)

where ut is iid in both cases.
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Stochastic Non-Stationarity

 Note that the model (1) could be generalised to the case where yt is an
explosive process:

yt =  + yt-1 + ut

where  > 1.

 Typically, the explosive case is ignored and we use  = 1 to characterise the
non-stationarity because

  > 1 does not describe many data series in
economics and finance.

  > 1 has an intuitively unappealing property: shocks
to the system are not only persistent through time,
they are propagated so that a given shock will have
an increasingly large influence.
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Stochastic Non-stationarity: The Impact of Shocks

 To see this, consider the general case of an AR(1) with no drift:

yt = yt-1 + ut (3)

Let  take any value for now.

 We can write: yt-1 = yt-2 + ut-1

yt-2 = yt-3 + ut-2

 Substituting into (3) yields: yt = (yt-2 + ut-1) + ut

= 2yt-2 + ut-1 + ut

 Substituting again for yt-2: yt = 2(yt-3 + ut-2) + ut-1 + ut

= 3 yt-3 + 2ut-2 + ut-1 + ut

 T successive substitutions of this type lead to:

yt = T y0 + ut-1 + 2ut-2 + 3ut-3 + ...+ Tu0 + ut
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The Impact of Shocks for 

Stationary and Non-stationary Series

 We have 3 cases:

1. <1  T0 as T

So the shocks to the system gradually die away.

2. =1  T =1 T

So shocks persist in the system and never die away. We obtain:

as T

So just an infinite sum of past shocks plus some starting value of y0.

3. >1. Now given shocks become more influential as time goes on,
since if >1, 3>2> etc.



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Detrending a Stochastically Non-stationary Series

 Going back to our 2 characterisations of non-stationarity, the r.w. with drift:
yt =  + yt-1 + ut (1)

and the trend-stationary process

yt =  + t + ut (2)

 The two will require different treatments to induce stationarity. The second case
is known as deterministic non-stationarity and what is required is detrending.

 The first case is known as stochastic non-stationarity. If we let
yt = yt - yt-1

and L yt = yt-1

so (1-L) yt = yt - L yt = yt - yt-1

If we take (1) and subtract yt-1 from both sides:

yt - yt-1 =  + ut

yt =  + ut

We say that we have induced stationarity by “differencing once”.
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Detrending a Series: Using the Right Method

 Although trend-stationary and difference-stationary series are both
“trending” over time, the correct approach needs to be used in each case.

 If we first difference the trend-stationary series, it would “remove” the
non-stationarity, but at the expense on introducing an MA(1) structure into
the errors.

 Conversely if we try to detrend a series which has stochastic trend, then we
will not remove the non-stationarity.

 We will now concentrate on the stochastic non-stationarity model since
deterministic non-stationarity does not adequately describe most series in
economics or finance.
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Sample Plots for various Stochastic Processes:

A White Noise Process
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Sample Plots for various Stochastic Processes: 

A Random Walk and a Random Walk with Drift
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Sample Plots for various Stochastic Processes: 

A Deterministic Trend Process
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Autoregressive Processes with 

differing values of  (0, 0.8, 1)
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Definition of Non-Stationarity

 Consider again the simplest stochastic trend model:

yt = yt-1 + ut

or yt = ut

 We can generalise this concept to consider the case where the series
contains more than one “unit root”. That is, we would need to apply the
first difference operator, , more than once to induce stationarity.

Definition

If a non-stationary series, yt must be differenced d times before it becomes
stationary, then it is said to be integrated of order d. We write yt I(d).

So if yt  I(d) then dyt I(0).

An I(0) series is a stationary series

An I(1) series contains one unit root,

e.g. yt = yt-1 + ut
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Characteristics of I(0), I(1) and I(2) Series

 An I(2) series contains two unit roots and so would require differencing 

twice to induce stationarity.

 I(1) and I(2) series can wander a long way from their mean value and 

cross this mean value rarely.

 I(0) series should cross the mean frequently. 

 The majority of economic and financial series contain a single unit root, 

although some are stationary and consumer prices have been argued to 

have 2 unit roots.
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How do we test for a unit root?

 The early and pioneering work on testing for a unit root in time series 

was done by Dickey and Fuller (Dickey and Fuller 1979, Fuller 1976). 

The basic objective of the test is to test the null hypothesis that  =1 in:

yt = yt-1 + ut

against the one-sided alternative  <1. So we have 

H0: series contains a unit root 

vs. H1: series is stationary. 

 We usually use the regression:

yt = yt-1 + ut

so that a test of =1 is equivalent to a test of =0 (since -1=).
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Different forms for the DF Test Regressions

 Dickey Fuller tests are also known as  tests: , , .

 The null (H0) and alternative (H1) models in each case are

i) H0: yt = yt-1+ut

H1: yt = yt-1+ut, <1

This is a test for a random walk against a stationary autoregressive process of
order one (AR(1))

ii) H0: yt = yt-1+ut

H1: yt = yt-1++ut, <1

This is a test for a random walk against a stationary AR(1) with drift.

iii) H0: yt = yt-1+ut

H1: yt = yt-1++t+ut, <1

This is a test for a random walk against a stationary AR(1) with drift and a 
time trend.
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Computing the DF Test Statistic

 We can write

yt=ut

where yt = yt- yt-1, and the alternatives may be expressed as

yt = yt-1++t +ut

with ==0 in case i), and =0 in case ii) and =-1. In each case, the
tests are based on the t-ratio on the yt-1 term in the estimated regression of
yt on yt-1, plus a constant in case ii) and a constant and trend in case iii).
The test statistics are defined as

test statistic =

 The test statistic does not follow the usual t-distribution under the null,
since the null is one of non-stationarity, but rather follows a non-standard
distribution. Critical values are derived from Monte Carlo experiments in,
for example, Fuller (1976). Relevant examples of the distribution are
shown in table 4.1 below










SE( )
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Critical Values for the DF Test

The null hypothesis of a unit root is rejected in favour of the stationary alternative

in each case if the test statistic is more negative than the critical value.

Significance level 10% 5% 1%

C.V. for constant

but no trend

-2.57 -2.86 -3.43

C.V. for constant

and trend

-3.12 -3.41 -3.96

Table 4.1: Critical Values for DF and ADF Tests (Fuller,

1976, p373).
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The Augmented Dickey Fuller (ADF) Test

 The tests above are only valid if ut is white noise. In particular, ut will be
autocorrelated if there was autocorrelation in the dependent variable of the
regression (yt) which we have not modelled. The solution is to “augment”
the test using p lags of the dependent variable. The alternative model in
case (i) is now written:

 The same critical values from the DF tables are used as before. A problem
now arises in determining the optimal number of lags of the dependent
variable.

There are 2 ways

- use the frequency of the data to decide

- use information criteria




 
p

i

tititt uyyy
1
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Testing for Higher Orders of Integration

 Consider the simple regression:

yt = yt-1 + ut

We test H0: =0 vs. H1: <0.

 If H0 is rejected we simply conclude that yt does not contain a unit root.

 But what do we conclude if H0 is not rejected? The series contains a unit
root, but is that it? No! What if ytI(2)? We would still not have rejected. So
we now need to test

H0: ytI(2) vs. H1: ytI(1)

We would continue to test for a further unit root until we rejected H0.

 We now regress 2yt on yt-1 (plus lags of 2yt if necessary).

 Now we test H0: ytI(1) which is equivalent to H0: ytI(2).

 So in this case, if we do not reject (unlikely), we conclude that yt is at least
I(2).
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The Phillips-Perron Test

 Phillips and Perron have developed a more comprehensive theory of unit root 

nonstationarity. The tests are similar to ADF tests, but they incorporate an 

automatic correction to the DF procedure to allow for autocorrelated residuals.

 The tests usually give the same conclusions as the ADF tests, and the 

calculation of the test statistics is complex.
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Criticism of Dickey-Fuller and 

Phillips-Perron-type tests

 Main criticism is that the power of the tests is low if the process is stationary 
but with a root close to the non-stationary boundary.

e.g. the tests are poor at deciding if 

=1 or =0.95,

especially with small sample sizes.

 If the true data generating process (dgp) is 

yt = 0.95yt-1 + ut

then the null hypothesis of a unit root should be rejected.

 One way to get around this is to use a stationarity test as well as the unit root 
tests we have looked at.
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Stationarity tests 

 Stationarity tests have

H0: yt is stationary

versus H1: yt is non-stationary

So that by default under the null the data will appear stationary. 

 One such stationarity test is the KPSS test (Kwaitowski, Phillips, Schmidt and 
Shin, 1992).

 Thus we can compare the results of these tests with the ADF/PP procedure to 
see if we obtain the same conclusion.
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Stationarity tests (cont’d)

 A Comparison

ADF / PP KPSS

H0: yt  I(1) H0: yt  I(0)

H1: yt  I(0) H1: yt  I(1)

 4 possible outcomes 

Reject H0 and Do not reject H0

Do not reject H0 and Reject H0

Reject H0 and Reject H0

Do not reject H0 and Do not reject H0
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Unit Root Tests with Structural Breaks

 The standard Dickey-Fuller-type unit root tests presented above do not 
perform well if there are structural breaks in the series 

 The tests have low power in such circumstances and they fail to reject 
the unit root null hypothesis when it is incorrect as the slope parameter 
in the regression of yt on yt−1 is biased towards unity

 The larger the break and the smaller the sample, the lower the power of 
the test

 Unit root tests are also oversized in the presence of structural breaks 

 Perron (1989) demonstrates that after allowing for structural breaks in 
the tests, a whole raft of macroeconomic series may be stationary

 He argues that most economic time series are best characterised by 
broken trend stationary processes, i.e. a deterministic trend but with a 
structural break.
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The Perron (1989) Procedure - Background

 Perron (1989) proposes three test equations differing dependent on the 

type of break that is thought to be present:

1. A ‘crash’ model that allows a break in the level (i.e. the intercept)

2. A ‘changing growth’ model that allows for a break in the growth rate (i.e. 

the slope) 

3. A model that allows for both types of break to occur at the same time, 

changing both the intercept and the slope of the trend. 

 Define the break point in the data as Tb and Dt is a dummy variable 

defined as 
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The Perron (1989) Procedure - Details

 The equation for the third (most general) version of the test is

 For the crash only model, set α2 = 0

 For the changing growth only model, set α1 = 0

 In all three cases, there is a unit root with a structural break at Tb under 
the null hypothesis and a series that is a stationary process with a break 
under the alternative

 A limitation of this approach is that it assumes that the break date is 
known in advance 

 It is possible, however, that the date will not be known and must be 
determined from the data. 
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The Banerjee et al. (1992) and Zivot and Andrews (1992) 

Procedures - Background

 More seriously, Christiano (1992) has argued that the critical values 

employed with the test will presume the break date to be chosen 

exogenously

 But most researchers will select a break point based on an examination 

of the data

 Thus the asymptotic theory assumed will no longer hold 

 Banerjee et al. (1992) and Zivot and Andrews (1992) introduce an 

approach to testing for unit roots in the presence of structural change 

that allows the break date to be selected endogenously.

 Their methods are based on recursive, rolling and sequential tests. 
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The Banerjee et al. (1992) and Zivot and Andrews (1992) 

Procedures - Details

 For the recursive and rolling tests, Banerjee et al. propose four 

specifications. 

1. The standard Dickey-Fuller test on the whole sample

2. The ADF test conducted repeatedly on the sub-samples and the minimal 

DF statistic is obtained

3. The maximal DF statistic obtained from the sub-samples

4. The difference between the maximal and minimal statistics

 For the sequential test, the whole sample is used each time with the 

following regression being run

where tused = Tb/T .
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The Banerjee et al. (1992) and Zivot and Andrews (1992) 

Procedures – Details 2

 The test is run repeatedly for different values of Tb over as much of the 

data as possible (a ‘trimmed sample’) 

 This  excludes the first few and the last few observations 

 Clearly it is τt(tused) allows for the break, which can either be in the 

level (where τt(tused) = 1 if t> tused and 0 otherwise); or the break can be 

in the deterministic trend (where τt(tused) = t − tused if t > tused and 0 

otherwise

 For each specification, a different set of critical values is required, and 

these can be found in Banerjee et al.
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Further Extensions

 Perron (1997) proposes an extension of the Perron (1989) technique 
but using a sequential procedure that estimates the test statistic 
allowing for a break at any point during the sample to be determined 
by the data

 This technique is very similar to that of Zivot and Andrews, except that 
his is more flexible since it allows for a break under both the null and 
alternative hypotheses

 A further extension would be to allow for more than one structural 
break in the series – for example, Lumsdaine and Papell (1997) 
enhance the Zivot and Andrews (1992) approach to allow for two 
structural breaks.
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Testing for Unit Roots with Structural Breaks 

Example: EuroSterling Interest Rates

 Brooks and Rew (2002) examine whether EuroSterling interest rates 

are best viewed as unit root process or not, allowing for the possibility 

of structural breaks in the series

 Failure to account for structural breaks (caused, for example, by 

changes in monetary policy or the removal of exchange rate controls) 

may lead to incorrect inferences regarding the validity or otherwise of 

the expectations hypothesis. 

 Their sample covers the period 1 January 1981 to 1 September 1997

 They use the standard Dickey-Fuller test, the recursive and sequential 

tests of Banerjee et al. They also employ the rolling test, the Perron 

(1997) approach and several other techniques
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Testing for Unit Roots with Structural Breaks in 

EuroSterling Interest Rates – Results
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Testing for Unit Roots with Structural Breaks in 

EuroSterling Interest Rates – Conclusions

 The findings for the recursive tests  are that the unit root null should 

not be rejected at the 10% level for any of the maturities examined

 For the sequential tests, the results are slightly more mixed with the 

break in trend model not rejecting the null hypothesis, while it is 

rejected for the short, 7-day and the 1-month rates when a structural 

break is allowed for in the mean

 The weight of evidence indicates that short term interest rates are best 

viewed as unit root processes that have a structural break in their level 

around the time of ‘Black Wednesday’ (16 September 1992) when the 

UK dropped out of the European Exchange Rate Mechanism

 The longer term rates, on the other hand, are I(1) processes with no 

breaks
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Seasonal Unit Roots

 It is possible that a series may contain seasonal unit roots, so that it 

requires seasonal differencing to induce stationarity

 We would use the notation I(d,D) to denote a series that is integrated of 

order d,D and requires differencing d times and seasonal differencing 

D times to obtain a stationary process

 Osborn (1990) develops a test for seasonal unit roots based on a 

natural extension of the Dickey-Fuller approach. 

 However, Osborn also shows that only a small proportion of 

macroeconomic series exhibit seasonal unit roots; the majority have 

seasonal patterns that can better be characterised using dummy 

variables, which may explain why the concept of seasonal unit roots 

has not been widely adopted
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Cointegration: An Introduction

 In most cases, if we combine two variables which are I(1), then the
combination will also be I(1).

 More generally, if we combine variables with differing orders of
integration, the combination will have an order of integration equal to the
largest. i.e.,

if Xi,t  I(di) for i = 1,2,3,...,k

so we have k variables each integrated of order di.

Let (1)

Then zt  I(max di)

z Xt i i t
i

k



 ,

1



P e m o d e l a n   A R I M A 

P  e  r  a  m  a  l  a  n    E  k  o  n  o  m  e  t  r  i k  a  

Linear Combinations of Non-stationary Variables

 Rearranging (1), we can write

where 

 This is just a regression equation. 

 But the disturbances would have some very undesirable properties: zt´ is 
not stationary and is autocorrelated if all of the Xi are I(1).

 We want to ensure that the disturbances are I(0). Under what circumstances 
will this be the case?



 i

i
t

t
z

z
i k   

1 1
2, ' , ,...,

X X zt i i t t
i

k

1
2

, , ' 



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Definition of Cointegration (Engle & Granger, 1987)

 Let zt be a k1 vector of variables, then the components of zt are cointegrated
of order (d,b) if

i) All components of zt are I(d)

ii) There is at least one vector of coefficients  such that  zt  I(d-b)

 Many time series are non-stationary but “move together” over time.

 If variables are cointegrated, it means that a linear combination of them will
be stationary.

 There may be up to r linearly independent cointegrating relationships (where
r  k-1), also known as cointegrating vectors. r is also known as the
cointegrating rank of zt.

 A cointegrating relationship may also be seen as a long term relationship.
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Cointegration and Equilibrium

 Examples of possible Cointegrating Relationships in finance:

 spot and futures prices

 ratio of relative prices and an exchange rate

 equity prices and dividends

 Market forces arising from no arbitrage conditions should ensure an 

equilibrium relationship.

 No cointegration implies that series could wander apart without bound in the 

long run.
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Equilibrium Correction or Error Correction Models

 When the concept of non-stationarity was first considered, a usual
response was to independently take the first differences of a series of I(1)
variables.

 The problem with this approach is that pure first difference models have no
long run solution.

e.g. Consider yt and xt both I(1).

The model we may want to estimate is

 yt = xt + ut

But this collapses to nothing in the long run.

 The definition of the long run that we use is where
yt = yt-1 = y; xt = xt-1 = x.

 Hence all the difference terms will be zero, i.e.  yt = 0; xt = 0.
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Specifying an ECM

 One way to get around this problem is to use both first difference and levels 

terms, e.g.

 yt = 1xt + 2(yt-1-xt-1) + ut (2)

 yt-1-xt-1 is known as the error correction term.

 Providing that yt and xt are cointegrated with cointegrating coefficient , then 

(yt-1-xt-1) will be I(0) even though the constituents are I(1). 

 We can thus validly use OLS on (2).

 The Granger representation theorem shows that any cointegrating relationship 

can be expressed as an equilibrium correction model.
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Testing for Cointegration in Regression

 The model for the equilibrium correction term can be generalised to
include more than two variables:

yt = 1 + 2x2t + 3x3t + … + kxkt + ut (3)

 ut should be I(0) if the variables yt, x2t, ... xkt are cointegrated.

 So what we want to test is the residuals of equation (3) to see if they
are non-stationary or stationary. We can use the DF / ADF test on ut.

So we have the regression

with vt  iid.

 However, since this is a test on the residuals of an actual model, ,
then the critical values are changed.

 u u vt t t  1

ut
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Testing for Cointegration in Regression:

Conclusions

 Engle and Granger (1987) have tabulated a new set of critical values and hence

the test is known as the Engle Granger (E.G.) test.

 We can also use the Durbin Watson test statistic or the Phillips Perron approach

to test for non-stationarity of .

 What are the null and alternative hypotheses for a test on the residuals of a

potentially cointegrating regression?

H0 : unit root in cointegrating regression’s residuals

H1 : residuals from cointegrating regression are stationary

ut
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Methods of Parameter Estimation in 

Cointegrated Systems: 

The Engle-Granger Approach

 There are (at least) 3 methods we could use: Engle Granger, Engle and Yoo, and
Johansen.

 The Engle Granger 2 Step Method

This is a single equation technique which is conducted as follows:

Step 1:

- Make sure that all the individual variables are I(1).

- Then estimate the cointegrating regression using OLS.

- Save the residuals of the cointegrating regression, .

- Test these residuals to ensure that they are I(0).

Step 2:

- Use the step 1 residuals as one variable in the error correction model e.g.

 yt = 1xt + 2(       ) + ut

where       = yt-1- xt-1

1
ˆ
t

u

1
ˆ
t

u

ut

̂
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An Example of a Model for Non-stationary Variables: 

Lead-Lag Relationships between Spot 

and Futures Prices

Background

 We expect changes in the spot price of a financial asset and its corresponding
futures price to be perfectly contemporaneously correlated and not to be
cross-autocorrelated.

i.e. expect Corr(ln(Ft),ln(St))  1

Corr(ln(Ft),ln(St-k))  0  k

Corr(ln(Ft-j),ln(St))  0  j

 We can test this idea by modelling the lead-lag relationship between the two.

 We will consider two papers Tse(1995) and Brooks et al (2001).
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Futures & Spot Data

 Tse (1995): 1055 daily observations on NSA stock index and stock index 

futures values from December 1988 - April 1993.

 Brooks et al (2001): 13,035 10-minutely observations on the FTSE 100 stock 

index and stock index futures prices for all trading days in the period June 1996 

– 1997.
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Methodology

 The fair futures price is given by

where Ft
* is the fair futures price, St is the spot price, r is a continuously

compounded risk-free rate of interest, d is the continuously compounded yield

in terms of dividends derived from the stock index until the futures contract

matures, and (T-t) is the time to maturity of the futures contract. Taking

logarithms of both sides of equation above gives

 First, test ft and st for nonstationarity.

t
*

t
(r-d)(T-t)F  =  S e

t)-d)(T-(r  s  f tt *
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Dickey-Fuller Tests on Log-Prices and Returns for High 

Frequency FTSE Data

 Futures Spot

Dickey-Fuller Statistics

for Log-Price Data

-0.1329 -0.7335

Dickey Fuller Statistics

for Returns Data

-84.9968  -114.1803
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Cointegration Test Regression and Test on Residuals

 Conclusion: log Ft and log St are not stationary, but log Ft and log St are
stationary.

 But a model containing only first differences has no long run relationship.

 Solution is to see if there exists a cointegrating relationship between ft and
st which would mean that we can validly include levels terms in this
framework.

 Potential cointegrating regression:

where zt is a disturbance term.

 Estimate the regression, collect the residuals, , and test whether they are
stationary.

zt

ttt zfs  10 
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Estimated Equation and Test for Cointegration for 

High Frequency FTSE Data

Cointegrating Regression

Coefficient
 0

 1

Estimated Value

0.1345

0.9834

DF Test on residuals

tẑ

Test Statistic

-14.7303
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Conclusions from Unit Root and Cointegration Tests

 Conclusion: are stationary and therefore we have a cointegrating relationship

between log Ft and log St.

 Final stage in Engle-Granger 2-step method is to use the first stage residuals,

as the equilibrium correction term in the general equation.

 The overall model is

zt

zt

ttttt vFSzS   111110 lnlnˆln 
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